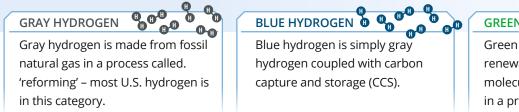
FACTSHEET #5 OF 5

Follow the QR code for other factsheets, background information and references:

HYDROGEN


Hydrogen is a light and energy-dense gas with three times more energy per pound than gasoline. In the U.S., 95% of U.S. hydrogen is made from natural gas and 4% is from coal. Some experts see hydrogen as a major energy carrier in a low carbon economy.

COLORS OF HYDROGEN

Colors are used as a shorthand for some hydrogen production processes, for example:

HYDROGEN DEMAND

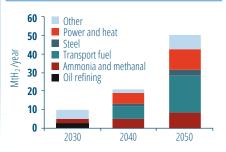
- Hydrogen can be used as an energy carrier or a chemical reactant.
- Most announced low-carbon hydrogen production projects in the U.S. are for blue hydrogen.
- There is likely to be competition between sectors for access to supplies of low carbon hydrogen.

FUEL CELLS IN TRANSPORT

Hydrogen-powered vehicles use fuel cells to drive an electric motor – this has an energy efficiency roughly double that
of combustion engine vehicles.

♦ Even gray hydrogen used in a fuel cell vehicle can reduce greenhouse gas emissions compared to a gasoline vehicle.

- Hydrogen fuel cell vehicles are classed as 'zero-emission vehicles' (ZEVs), as their only exhaust product is water vapor.
- Hydrogen fuel cell vehicles may be used in applications like long-distance trucking for which battery electric vehicles are less well suited.


GREEN HYDROGEN

Green hydrogen is made using renewable electricity to split water molecules into oxygen and hydrogen in a process called 'electrolysis'.

B

POTENTIAL U.S. HYDROGEN DEMAND BY SECTOR

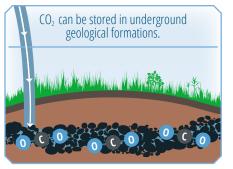
FACTSHEET #5 OF 5

TRANSPORT AND LEAKAGE

- Hydrogen gas occupies a lot of space; it is therefore made denser by compressing or liquefying it for storage, transport, and use.
- Hydrogen has a propensity to leak from pipelines and storage tanks, as it can corrode metals and its small molecular size makes it prone to escape through seals.
- This has climate implications: hydrogen has a climate warming effect about 37x stronger than carbon dioxide (over a 20-year interval), so leaks undermine the greenhouse gas benefits of using hydrogen.

IMPACTS...

...FROM GRAY HYDROGEN


- Gray hydrogen is currently produced for oil refineries and for fertilizer and chemical production.
- In gray hydrogen production the carbon from the methane gas is released as CO₂.
- Methane is a powerful greenhouse gas, and (like hydrogen leaks) methane leaks along the supply chain can undermine climate performance.

...FROM BLUE HYDROGEN

- Blue hydrogen is the same as gray hydrogen except the CO₂ is captured.
- The process to capture and store CO₂ from blue hydrogen has been trialed but is not yet widely used.
- Concerns about CO₂ capture include leakage risk and the use of captured CO₂ to extract more crude oil from existing wells.

...FROM GREEN HYDROGEN

- To be truly low-carbon, electrolysers must consume renewable electricity to produce hydrogen.
- 4,000 metric tons of electrolytic hydrogen were produced in the U.S. in 2022... but mostly from grid electricity including fossil power.
- Producing ten million metric tons of green hydrogen in 2040 would require 50-60 gigawatt of dedicated non-stop renewable electricity supply.
 - For comparison, 36 gigawatt of renewable capacity was added to the U.S. grid in 2023.
- Green hydrogen is not yet commercially viable without significant external support – in large part because of the cost of the electricity.

GREENHOUSE GAS EMISSIONS PER FUEL UNIT FOR HYPOTHETICAL GREEN, BLUE, AND GRAY PRODUCTION PATHWAYS Note this does not include the efficiency bonus of fuel cell vehicles.

INDIRECT EFFECTS: ADDITIONALITY

Using renewable electricity for green hydrogen production offers no climate benefit if that renewable electricity is simply diverted from homes and other industries. To be truly low-carbon, green hydrogen production must be accompanied by the deployment of 'additional' renewables.